FT. DETRICK DEFENSE MEDICAL LOGISTICS CENTER

Frederick, MD

Building and Plant Energy Analysis

Technical Assignment 2 Prepared for: Dr. William Bahnfleth Prepared by: Domenica Ferraro, Mechanical Option October 26, 2007

Building and Plant Energy Analysis

TABLE OF CONTENTS

Executive Summary
LEED-NC Version 2.2 Certification
ASHRAE Standard 90.1-2004 Compliance5
Building Envelope Compliance5
HVAC Systems Compliance
Power, Lighting, & Motor Compliance8
Lost Rentable Space Breakdown 10
Mechanical System First Cost 11
Design Load Analysis 11
Annual Energy Consumption and Operation Costs
References
Appendix A – LEED-NC Version 2.2 Checklist 17
Appendix B – Trace Inputs for Design Load Estimation 21
Appendix C – Trace Inputs for Energy Analysis 24

2

Building and Plant Energy Analysis

October 26, 2007

EXECUTIVE SUMMARY

Ft. Detrick Defense Medical Logistics Center (DMLC) is a three-story office building in Frederick, MD. This report analyzes how well it utilizes energy. The first investigation performed is a LEED Certification study. In this analysis, the building was rated according to LEED-NC version 2.2. This measures the buildings sustainability. Since Ft. Detrick is a military structure, its sustainability is measured using the SPiRiT rating scale. Ft. Detrick will receive a Silver SPiRiT rating when construction is complete (40 out of 100 credits), but if a LEED rating was applied, it would not be certified (19 out of 69 credits). Details of how a LEED rating could be acquired are outlined in this report.

The second investigation, an ASHRAE 90.1 Analysis, can be broken down into three parts: Building Envelope Compliance, HVAC Systems Compliance, and Power, Lighting, & Motor Compliance. Results of this study are summarized in Table 1, below.

	ASHRAE 90.1 Compliance Summary										
	Building Envelope				Building Envelope HVAC Systems			Power,	Lighting, 8	Motors	
	Roof	Walls	Floors	Doors	Fenestration	Efficiencies	Insulation	Service Water Heat	Power	Lighting	Motors
Comply	YES	YES	NO	YES	YES	YES	YES	YES	YES	NO	NO

 Table 1

 ASHRAE 90.1 Compliance Summary

Ft. Detrick is a 129,900 ft² structure with six mechanical rooms housing the air handling units, one boiler room, and one mechanical chase. 5.2% of potentially rentable space is lost due to mechanical space. The cost of the building's HVAC system is approximately \$1,084,037 (\$8.36/ft²).

The Design Load Estimation and the Annual Energy Consumption and Cost Analysis were conducted in Trane Trace 700. The results of this assessment reveal that three of the systems analyzed have design airflows drastically different from airflows on the design documents. Further, the total annual utility consumption is 1,557,197 kWh of Electricity and 3902 Therms of gas consumption. This is much less than the HVAC design engineer calculated in their analysis. Trace computes the cost to operate the HVAC systems is \$156,209 (\$1.28/ft²).

Building and Plant Energy Analysis

LEED-NC VERSION 2.2 CERTIFICATION

LEED stands for Leadership in Energy and Environmental Design. Developed by the US Green Building Council (USGBC), the LEED rating system is used to measure a building's sustainability. A summary of the LEED points that can be obtained for Ft. Detrick is found in Appendix A. Since Ft. Detrick is a military building, the SPiRiT rating system is used to rank sustainability. SPiRiT stands for Sustainable Project Rating Tool. The format is similar to LEED in that it gives a rating based on a certain amount of credits obtained. SPiRiT however is out of 100 credits where as LEED is out of 69. Ft. Detrick cannot receive LEED certification because it only meets the criteria for 19 credits, but it can receive 40 credits according to the SPiRiT rating system. This is known as a Silver SPiRiT rating. The extra credits could be obtained because there are three additional categories in the SPiRiT system: Facility Delivery Process, Current Mission, and Future Missions.

The credits under the Facility Delivery Process category are achieved by a holistic delivery of the facility. On Ft. Detrick, this is met by including the entire project team in the delivery process. The project team includes the future occupants of the building, contracting staff, owner representatives, project manager, architects, and engineers. Project goals were identified early, and charrettes were executed at different stages of delivery to get everyone involved in the design. This increased communication relates to sustainability because the project is completed efficiently. The design process for Ft. Detrick actually finished ahead of the original schedule, which saves time and energy for everyone involved.

The credits in the Current Mission category break into two parts. The first is to develop an Operations and Maintenance program. Frequent maintenance is important to sustainability because a building may be heating and cooling sufficiently for occupant comfort, but the equipment may be using more energy than is required to do so. The second part of this category is Soldier and Workplace Productivity and Retention. The theory behind this credit is that a high quality indoor environment is directly related to the productivity of the workers in that environment.

The third category, Future Missions, awards credits based on the functional life of the building and the ability of the building to adapt to future usages. Ft. Detrick is mostly open office space, so it can accommodate a wide range of future occupancies. With a rectangular footprint, it is efficient in shape, so there is a possibility for expansion. The facility is also designed for recycling of materials and systems.

Building and Plant Energy Analysis

October 26, 2007

For Ft. Detrick to receive LEED Certification, designers need to obtain seven more points. There are four "Innovation in Design" credits listed as "?" in the chart in Appendix A. The design points from the SPiRiT rating system that are not found in the LEED rating system may count for these innovation credits. Another credit that cannot be obtained with the current design is "Chemical and Pollutant Source Control." The only factor keeping Ft. Detrick from meeting these criteria is that no exhaust system is designed for the copy rooms. This would be a simple fix because the copy rooms are stacked vertically, so an exhaust main could pick up all copy rooms and run straight through the roof. Two more credits could potentially be obtained by developing a Construction Indoor Air Quality (IAQ) Management plan. I listed this as a "?" on the LEED Checklist because on the SPiRiT checklist, it was noted that this would add moderate cost. It is then up to the owner to decide if these credits are worth paying for to achieve LEED Certification.

ASHRAE STANDARD 90.1-2004 COMPLIANCE Building Envelope Compliance

There are two compliance paths in ASHRAE 90.1-2004 that can be used to evaluate the building envelope. Ft. Detrick meets the requirements of the Prescriptive Building Envelope Option. This option can be used when a building's vertical fenestration is less than 50% of the gross wall area and the skylight fenestration is less than 5% of the gross roof area. Ft. Detrick has no skylights, so the second requirement was met automatically. Table 2 summarizes the total glass area versus the total wall area, and shows that the first requirement is also met.

	Vertical Fenestration Summary								
Window	Area Per	Total Glass	Total Wall	Percent Vertical					
Quantity	Window	Area	Area	Fenestration					
213	24.89 ft ²	5302 ft ²	33,182 ft ²	15.98%					

Table 2
Vertical Fenestration Summary

The Prescriptive Building Envelope Option is described in Section 5.5 of ASHRAE 90.1-2004. Ft. Detrick is located in Frederick, MD. This is classified as climate zone 4A, so Table 5.5-4 is used to determine the building envelope requirements. Ft. Detrick is categorized as 'nonresidential' in this chart. Tables 3 and 4 compare actual material characteristics with ASHRAE values. The

Building and Plant Energy Analysis

actual insulation R-values and fenestration values are taken from the specifications for Ft. Detrick provided by Baker and Associates.

	Building Envelope Compliance - Opaque Elements						
	Building Component	Insulation Minimum R-Value	Actual Insulation R-value	Comply			
Roofs							
	Insulation Entirely Above Deck	R-15	R-20	YES			
Walls, Ab	oove Grade						
	Mass	R-5.7	R-13	YES			
Floors							
	Mass	R-6.3	R-5	NO			
Opaque I	Doors						
	Swinging	R-2 (U-0.7)	R-10	YES			

Table 3 uilding Envelope Compliance - Opaque Eleme

Table 4
Building Envelope Compliance - Fenestration

Vertical Glazing 15.98% of Wall	Maximum per ASHRAE	Actual per Design Documents	Comply				
U-Value Fixed	0.57	0.29	YES				
U-Value Operable	0.57	0.29	YES				
SHGC All Orientations	0.39	0.38	YES				
SHGC North-Oriented	0.49	0.38	YES				

HVAC Systems Compliance

Since Ft. Detrick is a new construction and not an addition or renovation, HVAC systems compliance is determined by Section 6.2 of ASHRAE 90.1-2004. It is greater than two stories, so sections 6.4 and 6.5 are the compliance path. Table 5 summarizes the building's compliance with the minimum equipment efficiencies listed in Section 6.4.

Building and Plant Energy Analysis

October 26, 2007

Table 5 Minimum Equipment Efficiency Compliance								
Equipment	Quantity	Minimum Efficiency (ASHRAE)	ASHRAE 90.1- 2004 Table Reference	Actual Efficiency	Comply			
Rotary Screw								
Water Cooled								
Chiller	2	COP = 4.90	6.8.1 C	COP = 5.39	YES			
Gas-Fired Boilers	2	E _T = 75%	6.8.1 F	E _T = 80%	YES			
Centrifugal Fan								
Cooling Towers	2	gpm/hp = 20.0	6.8.1 G	gpm/hp = 42	YES			

Unit heaters and air conditioning units are not listed in the table above, but are designed to comply with ASHRAE 90.1-2004. It is called out in specification section 15700A-14 of the design documents that "Units shall have an efficiency meeting or exceeding ASHRAE 90.1 requirements" (Baker). However, the SEER value for the air conditioning units (manufactured by Liebert) and the efficiency of the unit heaters (manufactured by Trane) are not included in the manufacturer's cut sheets in the engineer's design analysis.

Ft. Detrick is also in compliance with the standards for insulation. Its ductwork is insulated with 1" thick rigid mineral fiber per the design documents. An R-value was not specified for this material in the design documents, but ROXUL, a manufacturer of rigid mineral fiber, list the R-value as 4.2. For an unvented attic with roof insulation, the minimum R-value listed in ASHRAE 90.1-2004 is 3.5. Therefore, the ductwork insulation complies. The piping insulation is also in compliance with ASHRAE 90.1-2004, as seen in Table 6.

Building and Plant Energy Analysis

October 26, 2007

Minimum Pipe Insulation Thickness Compliance									
	Неа	ting Hot	Water	Dom	Domestic Hot Water		Chilled Water		
Nominal Pipe Size (in)	Min. Thick.	Actual Thick.	Comply	Min. Thick.	Actual Thick.	Comply	Min. Thick.	Actual Thick.	Comply
<1	1	1		0.5	1		0.5	1	
1 to <1 1/2	1	1	YES	0.5	1	YES	0.5	1	YES
1 1/2 to <4	1	1.5	TES	1	1	TES	1	1	TES
4 to <8	1.5	1.5		1	1		1	1	
Operating Temperature Range (°F)	141	-200		10)5+		40-	-60	

Table 6
Minimum Pipe Insulation Thickness Compliance

The service water heating is also in compliance with ASHRAE 90.1-2004. The required performance for an electric hot water heater is determined by the energy factor (EF). For all four electric hot water heaters, the EF is above the minimum requirement, as is illustrated in Table 7.

Table 7 **Minimum Service Water Heater Efficiency Compliance**

Heater Location	Volume (gal)	Minimum EF	Actual EF	Comply	
Janitor Closets	40	0.877	0.897	YES	
Under Sinks	6	0.922	0.942	YES	
			al)		

EF=0.93-(0.00132*gal)

POWER, LIGHTING, & MOTOR COMPLIANCE

The power compliance requirements are outlined in Section 8 of ASHRAE 90.1-2004. It states that the feeder conductors must be sized for a maximum 2% voltage drop, and the branch circuit conductors must be sized for a maximum 3% voltage drop, both at design load conditions. The power distribution system for Ft. Detrick is designed to comply with these criteria.

The lighting compliance requirements are outlined in Section 9. The goal of this section is to establish a maximum interior lighting power allowance. The Space-By-Space Method

Building and Plant Energy Analysis

October 26, 2007

Compliance Path was chosen for analysis. Table 8 summarizes the compliance of different area types within Ft. Detrick.

	Table 8 Maximum Interior Lighting Power Allowance							
Building Area Type	Area (ft ²)	r Lighting Power 7 W/ft ² (Table 9.5.1)	Allowance Required Watts	Actual Watts	Comply			
Cafeteria	801	0.9	721	592	YES			
Classroom	2646	1.2	3175	3564	NO			
Conference	5406	1.3	7028	7284	NO			
Corridor	1558	0.5	779	3788	NO			
Electrical/Mechanical Room	8148	1.5	12,222	6048	YES			
Lobby	3246	1.3	4220	3264	YES			
Office - Enclosed/Open	98,377	1.1	108,215	138,885	NO			
Restrooms	2655	0.9	2390	3240	NO			
Stairs	1823	0.6	1094	1632	NO			
Storage	5300	0.9	4770	5288	NO			
Total	129,960	-	144,613	173,585	NO			

Motor efficiency compliance is determined by the standards in Section 10. Efficiency is calculated by dividing the brake horsepower by the input horsepower. These values are from the mechanical schedules and manufacturer's cut sheets, and are summarized in Table 9. Return fan data is from the manufacturer's (Loren Cook) cut sheets. Motors not listed in the chart are smaller than 1 hp, and thus are not required to comply with the standard.

Building and Plant Energy Analysis

October 26, 2007

Minimum Motor Efficiency Compliance								
Equipment	Input HP	внр	Actual Efficiency	Required Efficiency per Table 10.8	Comply			
Return Fan 1	5	3.29	65.8%	87.5%	NO			
Return Fan 2	5	3.29	65.8%	87.5%	NO			
Return Fan 3	5	3.45	69.0%	87.5%	NO			
Return Fan 4	5	3.17	63.4%	87.5%	NO			
Return Fan 5	5	4.12	82.4%	87.5%	NO			
Return Fan 6	5	4.12	82.4%	87.5%	NO			
Supply Fan 1	25	21.88	87.5%	91.7%	NO			
Supply Fan 2	25	22.04	88.1%	91.7%	NO			
Supply Fan 3	30	26.40	88.0%	93.0%	NO			
Supply Fan 4	30	25.11	83.7%	93.0%	NO			
Supply Fan 5	30	29.03	96.8%	93.0%	YES			
Supply Fan 6	30	29.78	99.3%	93.0%	YES			
Supply Fan 7	2	1.23	61.5%	86.5%	NO			
Pumps 1, 2	3	2.30	76.7%	87.5%	NO			
Pumps 3, 4	10	9.34	93.4%	89.5%	YES			
Pumps 5, 6	10	8.17	81.7%	89.5%	NO			
Pumps 7, 8	15	11.83	78.9%	91.0%	NO			
Pumps 9, 10	10	8.75	87.5%	89.5%	NO			

Table 9

LOST RENTABLE SPACE BREAK DOWN

Ft. Detrick is a three-story building with a 43,320 square foot footprint. The total square footage is 129,900 square feet. Six mechanical rooms house the air handling units, and there is one boiler room and one mechanical chase. Each mechanical room is 655 square feet, and the boiler room is 2790 square feet. The mechanical chase contains the boiler flues and is located within the mechanical rooms. Therefore, it adds no additional square footage. Since air handling units only serve the floor that they are located on, no vertical duct shafts are required. Additionally, all hot water, chilled water, and glycol piping is run vertically within the mechanical rooms. The total square footage taken up by mechanical space is 6720 square feet. This is 5.2% of the total area, so 5.2% of the building's rentable space is lost.

Building and Plant Energy Analysis

October 26, 2007

Mechanical System First Cost

Ft. Detrick's HVAC system consists of six air handling units (AHU-1 through AHU-6) that are on during regular operation and one emergency air handling unit (AHU-7) that runs by generator power. All AHUs are controlled by variable frequency drives (VFDs) and distribute air through variable air volume (VAV) hot-water reheat boxes. Stairwells, vestibules, and mechanical rooms are heated only and are served by electric cabinet unit heaters. IT/Communication rooms are cooled only and are served by air conditioning units in each room. The chiller plant contains two rotary screw water cooled chillers that are evaporatively cooled by two induced draft cooling towers, and the boiler plant contains two gas-fired hot water boilers.

The first cost of Ft. Detrick's HVAC system is provided by Baker and Associates. This cost is an estimate since the construction manager, Mascaro, wishes to keep bid numbers private. The initial cost estimated by Baker and Associates is \$1,084,037. The building is 129,900 square feet, and therefore the cost per square foot is about \$8.36/ft².

Design Load Analysis

The design loads for Ft. Detrick are estimated using Trane's Trace 700. The outdoor air ventilation rates, electrical loads, weather data and design occupancies are taken from the design documents provided by Baker and Associates. The lighting W/ft² is taken from Table 7. The occupancy, lighting, and equipment schedules are not stated in the design documents, so Trace's default office schedules are used. Infiltration is neglected in this calculation since it is also neglected in the design documents. Appendix B shows the Trace inputs in further detail. Tables 10 and 11 compare Trace's computed loads and ventilation indices with those found in the design documents.

Building and Plant Energy Analysis

October 26, 2007

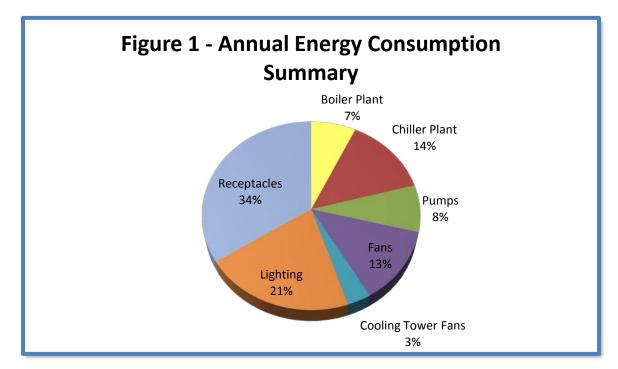
Table 10 Cooling Load Comparison							
System	Trace Load (ft ² /ton)	Design Load (ft ² /ton)	Percent Difference				
AHU-1	517.2	492.9	5%				
AHU-2	539.6	496.4	8%				
AHU-3	511.6	585.9	13%				
AHU-4	613.6	536.5	13%				
AHU-5	371.1	555.2	33%				
AHU-6	392.5	551.7	29%				
Heating Only	-	-	-				
Cooling Only	695.7	102.5	85%				

The actual load is determined by dividing the square footage the unit serves by the unit's capacity in tons, which for all air handling units is 35 tons. The result is that four of the six cooling systems exceeded Trace's recommendations. AHU-3 may require more load because it covers the largest square footage of the six air handling units. It is also important to note that AHU-5 and AHU-6 may require more cooling load because they are on the top floor. Because of this, the roof load factors into the total cooling load.

Supply and Ventilation Air Comparison (cfm/ft ²)								
	Trace	Trace %	Trace	Design				
System	Supply Air	Supply Air	Outdoor Air	Outdoor Air	Outdoor Air			
AHU-1	0.6	0.83	27.54%	0.17	0.26			
AHU-2	0.6	0.83	28.71%	0.17	0.24			
AHU-3	0.63	0.79	28.47%	0.18	0.24			
AHU-4	0.57	0.83	19.96%	0.11	0.24			
AHU-5	1.04	0.91	16.87%	0.18	0.24			
AHU-6	1.03	0.93	12.92%	0.13	0.26			
Heating Only	-	-	-	-	-			
Cooling Only	-	-	-	-	-			

 Table 11

 pply and Ventilation Air Comparison (cfm/ft²)


Building and Plant Energy Analysis

October 26, 2007

For four of the six air handling units, the supply air cfm/ft² is less than the actual value. Again, more cfm/ft² is needed for spaces on the top floor (AHU-5 and AHU-6). All units supply the building with adequate outdoor air.

ANNUAL ENERGY CONSUMPTION AND Operating Cost

An annual energy consumption analysis was performed in Trane's Trace 700 using the same ventilation rates, internal generations, and envelope characteristics as in the design load estimation. Fuel costs and equipment performance characteristics are taken from the design documents and are outlined in Appendix C. Figure 1 summarizes the results of the energy consumption analysis.

The HVAC system requires 45% of total energy, lighting requires 21%, and miscellaneous loads require 34%. Table 12 breaks down the cost of energy for each of these components.

Building and Plant Energy Analysis

October 26, 2007

Table 12 Utility Costs										
Component	Annual Electric Cost		Anı	nual Gas Cost	Тс	otal Cost	Сс	ost /ft ²		
HVAC	\$	70,052	\$	539	\$	70,591	\$	0.58		
Lighting	\$	\$ 32,691 \$ 52,928		-	\$	32,691	\$	0.27		
Receptacles	\$			-	\$	52 <i>,</i> 928	\$	0.43		
Total	\$	155,670	\$	539	\$	156,209	\$	1.28		

Another important factor to consider in an energy analysis is the emissions generated by the building. Table 13 summarizes the estimated emissions profile for Ft. Detrick.

Annual Emissions Summary									
Emission	lb/ft ² Electric Produced	Total lb Produced by Electric Power	lb/kWh Gas Produced	Total lb Produced by Gas Power	Total Amount Produced (lb)				
Particulates	1.02E-02	1,245.10	0.00E+00	-	1,245				
NO _x	7.02E-02	8,569.24	1.35E-05	1.54	8,571				
SO _x	1.19E-01	14,526.21	2.54E-03	290.39	14,817				
CO ₂	2.18E+01	2,661,104.20	1.34E+00	153,200.32	2,814,305				

Table 13

Baker and Associates, the HVAC design engineer for the project, performed an energy analysis in Trane's System Analyzer for the design of Ft. Detrick. Table 14 compares the results of the HVAC engineer's analysis with the results from Trace.

Energy Consumption Comparison						
Component	Annual Electric Consumption (kWh)	Annual Gas Consumption (Therms)				
Trace Result	1,557,197	3,902				
System Analyzer Result	1,823,591	12,092				
Percent Difference	15%	68%				

Table 1/

Building and Plant Energy Analysis

October 26, 2007

There is a significant difference in energy consumption between this analysis and the analysis done by the HVAC design engineer. System Analyzer differs from Trace in that it provides a quick evaluation of a building rather than a room-by-room assessment. System Analyzer is used in early stages of design when individual room data is still unknown. Instead of room data, the user simply inputs the area of the entire building and picks a building occupancy, which in this case "office" is selected. Equipment and fuel costs are inputted in the same fashion as Trace. The amount of energy generated and the cost of energy is then computed.

System Analyzer is less accurate than Trace because it evaluates the building as a whole without taking the individual rooms into consideration. Because office occupancy is selected for the entire building in System Analyzer, the program interprets the entire building as office space. This results in a higher energy consumption value for two reasons. Office occupancy in System Analyzer receives a lighting load of 1.5 W/ft^2 . In Trace, offices receive 1.1 W/ft^2 and most other occupancy types receive even lower values. Also, the miscellaneous equipment demand in System Analyzer is set at 2 W/ ft^2 , and Trace sets it at 2 W/ ft^2 for Utility rooms only. All other spaces receive 1.5 W/ft^2 or less.

Building and Plant Energy Analysis

References

ANSI/ASHRAE, Standard 90.1 – 2004, Energy Standard for Buildings Except Low-Rise Residential Buildings. American Society of Heating Refrigeration and Air Conditioning Engineers, Inc., Atlanta, GA. 2004.

Mechanical Construction Documents. Baker and Associates, Moon Township, PA. 2007.

LEED 2005 Green Building Rating System For New Construction & Major Renovations. Leadership in Energy & Environmental Design, Washington, DC. 2003.

Loren Cook Product Catalog. http://www.lorencook.com/products/prodmain.asp. October 23, 2007.

<u>ROXUL Technical Product Information.</u> http://www.servicepartners.com/products_services/distribution/insulation_products/mineral_fiber/Roxul/rht40oe m.pdf. October 23, 2007.

Building and Plant Energy Analysis

October 26, 2007

Appendix A – LEED-NC Version 2.2 Checklist

Project Name: Ft. Detrick Defense Medical Logistics Center

Project Location: Frederick, Maryland

Yes ? No

7 1 6

1

1

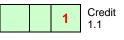
1

1

1

1

1


1

Sustainable Sites

Prereq **Construction Activity Pollution Prevention** 1 Credit **Site Selection** 1 Credit **Development Density & Community Connectivity** 2 Credit 1 **Brownfield Redevelopment** 3 Credit 1 Alternative Transportation, Public Transportation Access 4.1 Credit 1 Alternative Transportation, Bicycle Storage & Changing Rooms 4.2 Credit 1 Alternative Transportation, Low-Emitting & Fuel-Efficient Vehicles 4.3 Credit 1 Alternative Transportation, Parking Capacity 4.4 Credit Site Development, Protect or Restore Habitat 5.1 Credit Site Development, Maximize Open Space 5.2 Credit Stormwater Design, Quantity Control 6.1 Credit Stormwater Design, Quality Control 6.2 Credit 1 Heat Island Effect, Non-Roof 7.1 Credit 1 Heat Island Effect, Roof 7.2 Credit **Light Pollution Reduction** 8

Yes ? No

Water Efficiency

4

Water Efficient Landscaping, Reduce by 50%

5 Points

14

1

1

1

1

1

1

1

1

1

1

1

Points

Required

Building and Plant Energy Analysis

October 26, 2007

1		Credit Wa	ater Efficient Landscaping, No Potable Use or No Irrigation	1
	1	Credit Ini	novative Wastewater Technologies	1
	1	Credit Wa	ater Use Reduction, 20% Reduction	1
	1	Credit Wa	ater Use Reduction, 30% Reduction	1

	17	Energy & Atmosphere	17 Deinte
			Points

Prereq 1	Fundamental Commissioning of the Building Energy Systems	Required
Prereq 2	Minimum Energy Performance	Required
Prereq 3	Fundamental Refrigerant Management	Required

*Note for EAc1: All LEED for New Construction projects registered after June 26th, 2007 are required to achieve at least two (2) points under EAc1.

	10	Credit 1	Optimize Energy Performance	1 to 10
			10.5% New Buildings or 3.5% Existing Building Renovations	1
			14% New Buildings or 7% Existing Building Renovations	2
			17.5% New Buildings or 10.5% Existing Building Renovations	3
			21% New Buildings or 14% Existing Building Renovations	4
			24.5% New Buildings or 17.5% Existing Building Renovations	5
			28% New Buildings or 21% Existing Building Renovations	6
			31.5% New Buildings or 24.5% Existing Building Renovations	7
			35% New Buildings or 28% Existing Building Renovations	8
			38.5% New Buildings or 31.5% Existing Building Renovations	9
		_	42% New Buildings or 35% Existing Building Renovations	10
	3	Credit 2	On-Site Renewable Energy	1 to 3
			2.5% Renewable Energy	1
			7.5% Renewable Energy	2
			12.5% Renewable Energy	3
	1	Credit 3	Enhanced Commissioning	1
	1	Credit 4	Enhanced Refrigerant Management	1

Building and Plant Energy Analysis

October 26, 2007

? No Yes

4	9	Materials & Resources	13 Points
---	---	-----------------------	---------------------

		Prereq 1	Storage & Collection of Recyclables	Required
	1	Credit 1.1	Building Reuse, Maintain 75% of Existing Walls, Floors & Roof	1
	1	Credit 1.2	Building Reuse, Maintain 100% of Existing Walls, Floors & Roof	1
	1	Credit 1.3	Building Reuse, Maintain 50% of Interior Non-Structural Elements	1
	1	Credit 2.1	Construction Waste Management, Divert 50% from Disposal	1
	1	Credit 2.2	Construction Waste Management, Divert 75% from Disposal	1
	1	Credit 3.1	Materials Reuse, 5%	1
	1	Credit 3.2	Materials Reuse,10%	1
		Credit 4.1	Recycled Content, 10% (post-consumer + ½ pre-consumer)	1
		Credit 4.2	Recycled Content, 20% (post-consumer + 1/2 pre-consumer)	1
		Credit 5.1	Regional Materials , 10% Extracted, Processed & Manufactured Regionally	1
		Credit 5.2	Regional Materials, 20% Extracted, Processed & Manufactured Regionally	1
	1	Credit 6	Rapidly Renewable Materials	1
	1	Credit 7	Certified Wood	1
~				

7

1

1

1

1

6

Indoor Environmental Quality

Prereq 1	Minimum IAQ Performance	Required
Prereq 2	Environmental Tobacco Smoke (ETS) Control	Required
Credit 1	Outdoor Air Delivery Monitoring	1
Credit 2	Increased Ventilation	1

Points

Building and Plant Energy Analysis

5 Points

1

1

1

1

1

	1		Credit 3.1	Construction IAQ Management Plan, During Construction	1
	1		Credit 3.2	Construction IAQ Management Plan, Before Occupancy	1
1			Credit 4.1	Low-Emitting Materials, Adhesives & Sealants	1
1			Credit 4.2	Low-Emitting Materials, Paints & Coatings	1
1			Credit 4.3	Low-Emitting Materials, Carpet Systems	1
		1	Credit 4.4	Low-Emitting Materials, Composite Wood & Agrifiber Products	1
		1	Credit 5	Indoor Chemical & Pollutant Source Control	1
		1	Credit 6.1	Controllability of Systems, Lighting	1
		1	Credit 6.2	Controllability of Systems, Thermal Comfort	1
1			Credit 7.1	Thermal Comfort, Design	1
		1	Credit 7.2	Thermal Comfort, Verification	1
1			Credit 8.1	Daylight & Views, Daylight 75% of Spaces	1
		1	Credit 8.2	Daylight & Views, Views for 90% of Spaces	1
			-		

Yes ? No

1 4

Innovation & Design Process

	1	Credit 1.1
	1	Credit 1.2
	1	Credit 1.3
	1	Credit 1.4
1		Credit 2

Innovation in Design: Provide Specific Title
Innovation in Design: Provide Specific Title
Innovation in Design: Provide Specific Title
Innovation in Design: Provide Specific Title
LEED [®] Accredited Professional

Yes ? No

Building and Plant Energy Analysis

October 26, 2007

Appendix B – Trace Inputs for Design Load Estimation

Weather Data:

Summer	Dry bulb	91	*F
	Wet bulb	75	۴F
Winter	Dry bulb	12	۴F
Clearness	Summer	0.85	
	Winter	0.85	
Ground reflectance	Summer	0.2	
	Winter	0.2	

Internal Generation Inputs:

Heat Generation from People					
Occupancy Type	Sensible Load (BTUh)	Latent Load (BTUh)			
Cafeteria/Alcove	275	275			
Classroom	250	200			
Conference Room	245	155			
General Office Space	250	200			
Lobby/Corridor	250	200			
Storage, Equipment Rooms	275	275			

Heat Generation from Electrical Equipment					
Room Type Heat Generation					
Cafeteria/Alcove	7800 BTUh				
Classroom	150 W				
Conference Room	150 W				
Open Office	1.5 W/SF				
Enclosed Office	150 W				
Equipment Rooms	2 W/SF				

Building and Plant Energy Analysis

October 26, 2007

Construction Material Inputs:

Construction U-values				
Surface	U-value			
Floor	0.21261			
Roof	0.04301			
Exterior Wall	0.05000			
Interior Partition	0.38795			
Window	0.32000			

Occupancy Schedule:

educed year
Utilization
Utilization
Utilization

Lighting Schedule:

Lights - Office Simulation type: Reduced year					
January - December Cooling design to Weekday	Start time	End time	Percentage	Utilization	
	Midnight	6 a.m.	0.0		
	6 a.m.	7 a.m.	10.0		
	7 a.m.	8 a.m.	50.0		
	8 a.m.	5 p.m.	100.0		
	5 p.m.	6 p.m.	50.0		
	6 p.m.	7 p.m.	10.0		
	7 p.m.	Midnight	0.0		
Heating Design	Start time	End time	Percentage	Utilization	
	Midnight	Midnight	0.0		
January - December Saturday to Sunday	Start time	End time	Percentage	Utilization	
	Midnight	Midnight	0.0		

Building and Plant Energy Analysis

October 26, 2007

Equipment Schedule:

Misc - Low rise office Simulation type: Reduced year					
January - December	Cooling design to Weekday	Start time	End time	Percentage	Utilization
		Midnight	7 a.m.	5.0	
		7 a.m.	8 a.m.	80.0	
		8 a.m.	10 a.m.	90.0	
		10 a.m.	noon	95.0	
		noon	2 p.m.	80.0	
		2 p.m.	4 p.m.	90.0	
		4 p.m.	5 p.m.	95.0	
		5 p.m.	6 p.m.	80.0	
		6 p.m.	7 p.m.	70.0	
		7 p.m.	8 p.m.	60.0	
		8 p.m.	9 p.m.	40.0	
		9 p.m.	10 p.m.	30.0	
		10 p.m.	Midnight	20.0	
Heating Design		Start time	End time	Percentage	Utilization
		Midnight	Midnight	0.0	
January - December	Saturday to Sunday	Start time	End time	Percentage	Utilization
		Midnight	Midnight	5.0	

Building and Plant Energy Analysis

Appendix C – Trace Inputs for Energy Analysis

Fuel Cost Inputs:

Utility Rates - Baltimore Gas and Electric						
Utility Type	Rate Type	Summer Charge	Winter Charge			
Electric Consumption	On Peak	\$0.07/kWh	\$0.055/kWh			
Electric Consumption	Off Peak	\$0.044/kWh	\$0.04/kWh			
Electric Demand	On Peak	\$10.22/kW	\$4.94/kW			
Electric Demand	Off Peak	\$4.94/kW	\$4.94/kW			
Gas Consumption	-	\$0.4165/therm				

Note that yearly energy utilization data could not be obtained since the building is currently under construction. These rates are estimates used by Baker and Associates in their energy analysis. A summer charge is applied from the start of June until the end of September. A winter charge is applied to utilities for all other months.

Boilers B-1 and B-2 Inputs:

Capacity	2160	Mbh
Energy rate	80	Percent efficient
Hot water pump Type Full load	Eq5020 - H	eating water circ pump 💌
consumption	1	

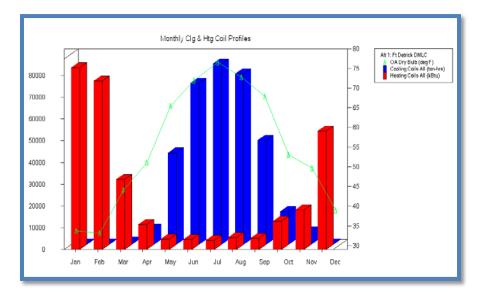
Building and Plant Energy Analysis

October 26, 2007

Chillers CH-1 and CH-2 Inputs:

Operating mode	Capacity		Energy rate	
ooling	168	tons	0.52	kW/ton
eat recovery		tons		kW/ton
ank charging		tons		kW/ton
				15.2.6
ank charging & heat recovery		tons		kW/ton
ank charging & heat recovery		Itons		Full load consumption
Pumps	Eq5003 - V-		25	
Fank charging & heat recovery Pumps Primary chilled water Condenser water		Туре		Full load consumption

Typical Airside Equipment Inputs:


	Туре	Static Pressure (in. wg)	Full Load Energy Rate	Full Load Energy Rate Units	Schedule
Primary	Eq4223 - FC Centrifugal var freq drv	6.06	0.000351	kW/Cfm-in wg	Available (100%)
Secondary	None	0	0	kW/Cfm	Cooling Only (Design)
Return	Eq4223 - FC Centrifugal var freq drv	0.5	0.000351	kW/Cfm-in wg	Cooling Only (Design)
System exhaust	None	0	0	kW/Cfm	Cooling Only (Design)
Room exhaust	None	0	0	kW/Cfm	Available (100%)
Optional ventilation	None	0	0	kW/Cfm	Available (100%)
Auxiliary	None	0	0	kW/Cfm	Available (100%)

These are the actual inputs for AHU-1. All other AHUs have the same type of supply and return fan, and all return fans have the same static pressure. The only difference between AHU-1 and the other AHUs is the static pressure. The input static pressure for the other five AHU's are as follows:

Unit	Static Pressure (in. wg)
AHU-2	6.04
AHU-3	6.47
AHU-4	6.33
AHU-5	6.51
AHU-6	6.57

Building and Plant Energy Analysis

October 26, 2007

Monthly Cooling and Heating Coil Profile: